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The Nonlinear Cahn-Hilliard Equation: 
Transition from Spinodal Decomposition 
to Nucleation Behavior 

A m y  Noviek-Cohen  1 
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The behavior of the nonlinear Cahn-Hilliard equation for asymmetric systems, 
c t= VZ(• +Bc 2 +c a-V2e)  within the unstable subspinodal region is 
explored. Energy considerations and amplitude equation methods are employed. 
Evidence is given for a transition from periodically structured"spinodal" 
behavior to nucleation behavior somewhere within the traditional spinodal. A 
mechanism for describing a time-dependent lengthening of the dominant 
wavelength is explored. 

KEY WORDS: Phase separation; spinodal decomposition; nucleation; 
Cahn-Hilliard equation. 

1. INTRODUCTION 

Quenching (rapid cooling) of homogeneous binary systems, typically 
alloys, (1) glasses, (2) or polymers, (3) results in the separation of the system 
into two phases described by the "coexistence curve" concentrations; see 
Fig. 1. Traditionally, the path to phase separation is classified as either 
nucleation or spinodal decomposition. Shallow quenches, i.e., quenches from 
the stable region (point A) to some point just below the coexistence curve 
(point B), are said to proceed via nucleation, which roughly speaking is 
characterized by the random appearance of small "bubbles" of the minor 
phase e2, which grow if sufficiently large, and which decay otherwise. On the 
other hand deep quenches from the point A to the point C below B are said 
to proceed via spinodal decomposition, which is characterized by the 
homogeneous onset of phase separation throughout the system. While 
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Fig. 1. Above the coexistence curve the system is stable; below it phase separation may 
occur. The highest temperature on the coexistence curve is known as Tcritica~ and the 
corresponding concentration, Ccrltical' A system at concentration e 0 and temperature T O 
separates into the coexistence concentrations el and e;.  Conservation of matter determines the 
fraction at the total volume which appears in each of the two phases. The more distant of the 
two concentrations, e; becomes that of the minor phase. The inner line delineates the spinodal 
curve or the limit of linear stability of the one phase system. 

experimentally ~1) and theoretically (4'5) there does not appear to be a sharp 
crossover between nucleation and spinodal decomposition behavior, 
classically the crossover has been connected with the limit of linear stability 
which coincides with the locus of the inflexion concentrations of the free 
energy; see Fig. 2. Between the spinodal and the coexistence curve, a finite 
perturbation of the system is necessary to destabilize the system and cause 
phase separation. The coexistence curve is given by the locus of concen- 
trations on a double tangent to the free energy; see Fig. 2. Such concen- 
trations have identical chemical potential and may coexist. Beyond the coex- 
istence curve, the only equilibrium state is the homogeneous one-phase state. 

While nucleation theories date back to Becker and Doring ~6) in 1935 
and later Lifshitz and Slyozov ~7) in 1961, the first attempt to treat spinodal 
decomposition was in 1958 via the phenomenological Cahn-Hill iard 
equation (8) 

6qC 
Ot -- V2(f(c) + KV2e) (1.1) 
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Fig. 2. The typical form of the free energy below the critical point, Tcrit , Ccr h .  The coex 
istence concentration c 1 and e 2 correspond to the double tangent points of the free energy. The 
chemical potential p = c~f/cqc is identical at the two coexistence concentrations. The overall 
free energy F(c)= S , , f ( c )dV  of a homogeneous system of concentration Co, where e~ < Co < e2 
is lowered by separation into these two concentrations. The spinodal curve of the limit of 
linear stability is given by the locus of those concentrations (c,1 , cs2 ) where ~2f/~c2 vanishes. 
For homogeneous system of concentration Co, Csl < c o < c,2 , separation of the system into 
phases infinitesimally close to the original phase lowers the overall free energy. 

where c (x ,  t)  is the concentration and f ( c )  is the classical free energy. Early 
analysis of the Cahn-Hil l iard  equation was confined to the implications of  
the linear theory only. 

We recall that linear stability analysis of  the Cahn-Hil l iard  equation ~16) 
predicts a fastest growing wavelength which diverges at the spinodal and 
whose amplitude is predicted to grow exponentially at earliest times (a 
prediction which reportedly has been verified(17)). The energy barrier, or 
equivalently the size of  the perturbation which must occur in the system in 
order to initiate phase separation, is found (by linear analysis) to vanish 
within the spinodal region and is finite beyond it; thus it is not differentiable 
across the spinodal. (4) However it is well known that imperfections and 
impurities are capable of  inducing a smoothed ("imperfect") bifurcation.(32) 

In an attempt to remedy these nonphysical  features predicted by linear 
analysis of  the Cahn-Hil l iard  equation, various alternative methods of  
analysis were tried. (9-12) A common  feature of  these methods is the 
development of  scaling predictions for the dynamics of  nucleation and 
spinodal decomposition. In particular, the characteristic (or most dominant)  
wavelength of  the system has been predicted (9'1~ to behave at late times 
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as at -s ,  where the predicted value of a is method dependent, varying 
between approximately 0.19 and 0.35 and tending to be smaller at deeper 
quenches. Experiments in liquids ~a3) have provided evidence for the scaling 
laws, giving values of a ~ 0.33. More recently the structure function 

S(k,  t) = f e(r + r o, t) . e(r o, t) eik" r d r  

has also been predicted (4'9'1~ to have a scaling form: 

if(k, t) = k 73F(k, ka(t) ) 

where 

and where 

S(k, t) = S / f  S2(k, t) k 2 dk 

(1.2) 

k~(t) = f kS(k,  t) dk 

The scaling function F(x) has been seen to be somewhat dependent on the 
location of the quenched state and tends to become more peaked at deeper 
quenches, (9) thus describing a smooth transition between spinodal and 
nucleation dynamics that has been reported elsewhere. (4'5) 

While there are considerable differences between the predictions of 
Cahn-Hilliard theory (linear analysis) and those of other methods of 
analysis, it has been shown, (19) that the equations of Kawasaki dynamics 
reduce to Cahn-Hilliard theory when long-range interactions are considered. 
Thus, for example, in polymer systems where the interactions are inherently 
long range, the predictions of the various theories should coincide. See also 
Ref. 20 for a discussion of the convergence of classical and nonclassical 
spinodal behavior in the limit of long-range interaction systems. Clearly, 
stochastic driving forces are important in the evolution of the system and it 
would be most appropriate to consider the Cahn-Hilliard equation 
augmented by a stochastic driving force. Statistical approaches, however 
successful, always necessitate various approximating assumptions. The very 
past success of such approaches seems to justify a thorough study of the 
underlying nonlinear deterministic Cahn-Hilliard equation in order to 
ascertain what information is already contained there. Furthermore, we note 
that the Cahn-Hilliard equation has also appeared outside the context of 
spinodal decomposition, (2~) and hence the study of the nonlinear 
Cahn-Hilliard equation is of some independent interest. 
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Fig. 3. The parameter B as a function of temperature and concentration. 

Partial revelation of the full flavor of the nonlinear deterministic 
Cahn-Hilliard equation has appeared in Ref. 22. There the whole spectrum 
of the one-dimensional equilibrium solutions of the Cahn-Hilliard equation 
was presented [see also Eqs. (2.4), (2.5), below]. This was used in estimating 
the limit of monotonic global stability, or the limit beyond which all pertur- 
bations to the homogeneous state decay monotonically. This limit was shown 
to lie somewhere between the coexistence curve and a bounding line above it. 
The existence of an excitable region between the limit of monotonic global 
stability and the coexistence curve was conjectured. The existence of such an 
excitable region would be responsible for weak onset phenomena just beyond 
the coexistence curve. Furthermore, a finite amplitude periodic instability (in 
addition to the well-known nucleation instability) was shown to exist 
throughout the region beneath the coexistence curve. 

It is of interest to ascertain what predictions may be made about the 
evolution of periodic structure within the context of the nonlinear deter- 
ministic Cahn-Hilliard equation. In approaching this problem, two 
difficulties are encountered. First, while there exist periodic stationary 
solutions, they are not stable in that they are not local minima of the free 
energy functional from which the Cahn-Hilliard equation is derivable. 
Secondly, spinodal decomposition occurs by bifurcation through zero wave 
number, hence the evolution of the fastest growing mode is highly influenced 
by the neighboring longer modes. In the present paper we show how two 
nonrigorous approaches may nevertheless provide some insight into the 
process of structural development. In Section 2 we see which stationary 
periodic solutions are admissible according to an energy criterion, and 
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compare their periods with the wavelength of the fastest growing mode. In 
Section 3, we study the growth of the shortest growing mode and use side 
band effects to take into account the other growing modes. 

2. ADMISSIBLE STATIONARY SOLUTIONS 

The Cahn-Hilliard equation can be derived from the Landau-Ginzburg 
free energy 

F(C) = -~- [f(c)  + K(Vc) 2 ] dv 

by assuming the concentration flux to be proportional to minus the gradient 
of the first variation of F(c). Then by conservation of matter, 

63C 
~-~ = V(/.t(e) VOF) 

where ~t(c) is the mobility. Here K and /1(c) are assumed to be positive. 
Writing the equation in dimensionless form for arbitrary perturbations c in 
the concentration about an initially uniform concentration, and assuming 
f (c)  to be a quartic polynomial in the concentration, we obtain 

6qC 
c3t - VZ(ac -} -Be2 q- c3 _ V2c) (2.1) 

In the same notation, the Landau-Ginzburg free energy is given by 

F ( c ( x , t ) ) = V f v [  1 2 1 3 1 4 1 ] +TBc + -IVcl 2 dv (2.2) 

Here a assumes the values +1, where a = 1 refers to the thermodynamically 
stable and metastable regions denoted hereafter as the region above the 
spinodal, and where a = M refers to the unstable region or the region below 
the spinodal. The parameter B is defined via derivatives of the free energy 
functional 

where the derivatives are evaluated at the quench concentration c o . Orien- 
tation with respect to the thermodynamic parameter B 2 is gained by noticing 
that if a = - l ,  then BE = 0  at the critical quench concentration 
(83f/Bc3)(c o = 0) (see also Fig. 3). B 2 increases monotonically to infinity as 
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Member of the class of one dimensional periodic equilibrium solutions at B = 4.5, 
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the spinodal (c~2f/Sc 2 = 0) is approached. Beyond the spinodal (a = +1), B 2 
decreases until the value of 4.5 is assumed at the binodal (the double tangent 
to the free energy function). As a first approximation, the mobility and the 
coefficient of the surface energy contribution have been assumed to be 
constant, and have been subsumed into the time, length, and concentration 
scalings. 

The results in this section as well as the next section hold both when the 
boundary conditions (22'25) 

Vc = 0, V(V2c) = 0 

are considered, as well as when periodic boundary conditions are assumed. 
In examining the stability properties of the Cahn-Hilliard equation, we 

note that the free energy F(c(x, t)) acts as a Liapounov functional since (23) 

cgF(c(x, t)) 
&t 

0 (2.3) 

Furthermore, it is easy to see that all the equilibrium solutions of (2.1) are 
extremals of (2.2). Moreover, it can be shown that the class of equilibrium 
solutions consists of periodic solutions which are not local minima of the 
free energy, (26) and of a limiting "phase-separated" nonperiodic solution 
which attains global minima of the free energy. 

822/38/3-4 19 
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Since we know the stationary solutions explicitly, it is easy to calculate 
their free energy and to ascertain which are admissible according to (2.3) 
from an initially slightly perturbed homogeneous state. Because the periodic 
solutions are not local minima, the justification for this calculation is not 
obvious. However, the justification appears a posteriori, in that more 
admissible solutions with periods similar to that of the fastest growing 
wavelength appear the closer we approach the critical concentration. It is 
then possible to conjecture that these stationary periodic solutions may serve 
as a series of saddles capable (locally in time) of stabilizing the transient 
periodic structure in the inner spinodal region. 

The set of all one-dimensional equilibrium solutions of (2.1) is (22'25) 

where 

and where 

lilt(X; ~2, B) /~1(~, s __ y,/2fl2(y ' 22) sn(fx,  ~fl) 
= 1 -- 71/2sn(fx, 22) 

L 7 

( 1 / 3 )  B 2 --  a ] 1/2 

• (1 +22)  2 -  1 2 Z + - ~ +  y)(1 +22 ) 

f = [ a + B(flx + fl2) + 3fllflZ ] ~/2 
2(1 + 22) 

(2.4) 

B B 2 1/2 1/2 
ql(x' B 2 ) = -  3 - +  ( - 3  - - a  ) tanh [ ( ~  ~ 2 - a  ) - - 2 ]  (2.5) 

We now use our knowledge of the functional dependence ,~2 =22(7) in 
order to calculate the free energies F(e(Z2; B)) as a function of the modulus 
2 2 for various values of the parameter B 2. 

Imposition of the composition conservation constraint, f~edv = 0, 
implies a functional dependence between Y and 22 which was obtained 
numerically in Refs. 22, 25. We note that for all values of B 2 for a = - 1 ,  
and for all B 2 > 4.5 for a = +1, there exists a whole spectrum of solutions; 
see Fig. 4. Furthermore, for each (B, a), there exists a periodic equilibrium 
solution of smallest period. As the modulus 2 2 ~ 1, the periods increase and 
the solutions tend toward the nonperiodic "completely phase separated" 
solution 
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F o r  conven ience  we n o r m a l i z e  the free energy  

F(e(x ,  t; B ) ) = --V(c(x,  t; B ) )/Fmin(B ) (2.6) 

where  r m i , ( B ) = - [ B ~ / 9 -  ( 1 / 2 ) a ]  2 is the free energy  of  the comple t e ly  

phase  separa ted  solut ion in a l imi t ing large system. N o t e  that  F ( e - =  0 ) =  0. 

H e n c e  if  our  ini t ial  s tate is a sl ight  pe r tu rba t ion  o f  a spa t ia l ly  h o m o g e n e o u s  

sys tem,  on ly  those  solu t ions  whose  free energies  are nega t ive  are admiss ib le  

acco rd ing  to (2.3). 

The  results  o f  these  ca l cu la t ions  are po r t r ayed  in Fig.  5, where  it can  be 

seen tha t  for all va lues  o f  B 2 as 22-+ 0, the free energy  o f  the equ i l ib r ium 

2.0 - o[ ~ : : : : .  / %  

1.2 Inset of detail 
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- I .2:-  
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Fig. 5. For various values of the parameter B 2, the free energy of the equilibrium solutions 
has been portrayed as a function of the square of the Jacobian modulus 2. The free energy has 
been normalized here so that F(e ~ 0) = 0 and so that the free energy of the totally phase 
separated tanh solutions is -1 .  Since dF/dt <~ O, all those solutions whose free energy is more 
than slightly greater than zero are unattainable by inducing small perturbations around the 
homogeneous state. The inset contains detailed sketch of the behavior of the free energy as a 
function of the square of the Jacobian parameter 2~ for 2 2 small, and it can be seen that 
subspinodally, only for B 2 small is the free energy negative for equilibrium solutions for 
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% ,)2 k' 
Fig. 6. The linear growth rate a as a function of k 2. If we consider a length scale bifurcation 
then systems so small that the dimensions of the system L < 2~, are stable. A system whose 
dimensions are increased beyond 2~ becomes unstable. 

solutions approaches that of the spatially homogeneous state. From the 
asymptotics of the solutions, ~22'25) we know that for all values of 
B 2 ( a = + l ) ,  as 2 2 ~  1, the completely phase separated solution (2.5) is 
approached; hence it follows from (2.6) that for all (a, B) as 21 ~ 1 the free 
energy approaches - 1 .  In Fig. 5, this limiting behavior has been drawn in 
with a dotted line. 

For B 2 ~  l (a  = - 1 )  the free energy is negative for all values of 2 2 and 
decreases monotonically with 22 from an initial value of zero. For 
B 2 >> l (a  ~-{--1) the free energies of the equilibrium solutions are all positive 
until 2 z ~ 1. In particular, for B 2 >> l (a  = i l )  only those solutions for which 
22 ~ 1 or 22 ~ 0 are conceivably attainable. Moreover, it is easy to show by 
asymptotic examination of the behavior of the amplitude of the equilibrium 
solutions (2.4) for all B2(a= +1), that 2 2 =  0 corresponds to the spatially 
degenerate homogeneous state e - 0. 

Thus it is clear from a preliminary glance at Fig. 5 that the set of 2 2 for 
which attainable configurations exist is much larger near B 2 ~ 0  and 
decreases with increasing B 2. We proceed now to compare the periods of 
these solutions with the length of fastest growing wavelength. 

From the calculations on which Fig. 5 is based, it is known that for 
B =-0.5(a = - - 1 )  at k z-- 0.0082 the free energy is already negative while for 
B ; 2.5(a = - 1 ) ,  the free energy vanishes at some 22, 0.9110 < 22 < 0.9396. 
By evaluating the period at these bounding values of 22 it is possible to 
obtain an estimate on the period of the configuration whose free energy 
vanishes; see Table I. For B = 4.5 and B -- 10.0 the calculation of the free 
energy has been taken to values of 22 where the free energy is still very high. 
From (2.4), we see that the period is given by T =  4K(22)/f(22, ~7). The 
factor f -  1 is nearly constant for 22 ~ 1 whereas 4K ~ oo as 22 --, 1. Lower 
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Table I. Estimates on the Period of That Nontrivial Solution Whose Free Energy 
Vanishes 

B a k 2 Period 

0.5 -1  0 <~ k z < 0.0082 27r ~ K  < 6.32 
2.5 -1 0.9110 < k z < 0.9396 8.52 < L < 9.10 
4.5 -1 0.978 < k 2 < 1.000 6.82 < L < oo 

(O.OO519) a (L > 8.37) 
10.0 --1 0.997 < k 2 < 1.000 4,18 < L < oo 

(0.999968) (L > 6.38) 

a The values in parentheses correspond to interpolated estimates. 

bounds are obtained by evaluating the period at the last value of  k 2 
evaluated or alternatively at a value 2 2 obtained by linear interpolation 
between the last value calculated and 2 2 = 1; see Table I. Clearly the decay 
in the free energy appears from Fig. 5 to be steeper than linear, hence the 
periods can be expected to be longer than the estimate in parenthesis. 

Thus we see that for B 2 ~ 0 there are solutions with 2 2 ~ 0 whose free 
energy is just slightly less than that of  the spatially homogeneous solution 
and whose period is very similar in size to the wavelength of  the fastest 
growing mode, 2n. 

On the other hand when B 2 >> 1 only those solutions for which 2 2 ~ 1 
are conceivably attainable. In particular we see that the class of  attainable 
solutions is larger for the near critical region than elsewhere, and that within 
this internal region there exist admissible equilibrium solutions whose period 
is similar in size to the wavelength of the fastest growing mode of  linear 
stability. 

3.  A M P L I T U D E  E Q U A T I O N  M E T H O D  

In the previous section, we saw that the distribution of  the free energies 
of  the equilibrium solutions was considerably different for the region 
B 2 ~  l ( a = - - l ) ,  i.e., in the region near the critical concentration, than 
elsewhere. In this section, we analyze the evolution of  a single mode located 
at the short wavelength end of  the spectrum of growing modes in order to 
model the development of  finite amplitude periodic structure from an initially 
imposed infinitesimal perturbation around a spatially homogeneous state. 
This approach is shown capable of  describing the evolution of  periodic 
structure in the region near the critical concentration. Thus the results of  
Sections 2 and 3 suggest that phase separation in the deep spinodal region 
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may be distinguishable, perhaps more nearly periodic or "spinodal," than in 
the rest of the spinodal region. Again, the mobility and the coefficient of the 
surface energy contribution are assumed to be constant. 

3.1. The Amplitude Equations 

Since we are in the deep unstable region, the growth rate of the fastest 
growing mode is in fact O(1) (except in the direct neighborhood of the 
spinodal) and it is not possible to use conventional nonlinear stability 
theory ~28) to develop amplitude equations for the fastest growing mode. 
However, modes near the critical wavelength (the longest growing 
wavelength, k 2 = k~ax/2 ) grow more slowly and amplitude equations in 
terms of these modes are readily obtained. Thus it is possible to first study 
the evolution of this mode and later to account for effects of the longer 
growing modes by including an additional long length scale. 

This approach would be fully justified if it could be demonstrated that 
in some system the shorter growing modes are initially more frequent in the 
system than the other growing modes. Strictly speaking, examination of the 
smallest growing modes corresponds to consideration of a length scale bifur- 
cation (see Fig. 6), i.e., to considering a system whose size has been limited 
to only a few times the wavelength of the fastest growing mode. This would 
correspond to looking at a system whose dimensions are of several tens of 
angstroms in the case of binary alloy systems to several hundreds of 
angstroms in the case of phase separation in polymer systems. It may, in 
fact, be technically feasible to carry out such experiments if the resultant 
system is large enough to overcome edge effects. (2~). We may consider our 
approach to describe a particular subset of all possible evolutions, whose 
results may or may not be fully applicable to the more general case. Some 
analysis of the behavior of the smallest growing mode has already appeared 
in the context of spinodal decomposition. ~19) We note that externally forced 
systems do lend themselves to traditional amplitude equation methods. ~33) 

Amplitude equations for the mode k 2 = 1 - p ~ ( k ~  = 1; Ref. 25) may be 
obtained by introducing the expansion c = Y' eic i, where e2 ~ [I c2(0)ll L2 and 
by defining the slow time variable r = et. It is then possible to prescribe the 
following hierarchy of 0(~ i) equations: 

Li =- _V2(_(1 _ p~2) c , -  V2ci) (3.1) 

L i = N i [all nonlinear terms of size o(ei)],  i/> 1, where the solution is 
required to be periodic. The amplitude equations are then obtained by 
sequential solution of the first few equations and by elimination of resonant 
terms. Transient effects which have not been explicitly considered here are in 
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fact readily taken into account (zg) by the inclusion of an additional, fast, 
time scale. 

If we constrain ourselves temporarily to one dimension we obtain the 
"roll" amplitude equation 

~-~vA =k2A + --3k 2 IAIZA (3.2) 

for solutions at lowest order which are of the form c 1 = A(r) ikx + A(r)e -iex. 
Likewise. if we assume that B = O(g), consideration of two dimensional 
perturbations leads to the amplitude equations 

d [--p Y + B X  2 q- q- dv (Y) = k2 1_ ( 3 y ,  3X2y) ] (3.3) 

for "hexagonal" solutions of the form (at lowest order) (28) 

cl = 2X(r)c~ ( ~ - k x )  c~ ( l  ky) + 

In one dimension there exists a steady state solution which is stable 
within the framework of equation (3.1) i fB 2 < 9k2. Thus i fB 2 is sufficiently 
small it is possible in one dimension to follow the development of an 
infinitesimal perturbation toward a periodic stationary state. 

Similarly, in two dimensions, the nontrivial steady state solutions to 
(3.3) are given by 

I• X =  0, 
II+: y = _ 4 / ~ ,  

III__: X =  Y, 

IV• X =  --Y, 

4 1/2 Y =  • 
X =  ~:(4p - ~v'-'16~2~ 

Y =  1~-5 [--/~ 5:(/~2 + 15p),/21 

y =  l~_S [_/~:t: (/~2 + 15p)1/2] 

(3.4) 

Note first that case I+ corresponds to the one-dimensional solution 
mentioned above. Within the framework of system (3.3), assuming p > 0, the 
trivial solution is always unstable (as predicted by linear stability) and I+ is 
always stable as it was within the context of Eq. (3.2). On the other hand I 
is stable only if ~2 < @6P. In cases III and IV, in each set one of the two 
solutions is always unstable, whereas if O2 > I~P the remaining solution is 
stable. Thus i f / ~ =  O(e), there exist stable roll solutions (case I), if/~2 is 
sufficiently small there exist stable rectangular solutions (case II), and for/~2 
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sufficiently large exist stable hexagon solutions (cases III and IV). Since the 
analysis has been strictly based on the assumption that B = O(e), there is no 
reason to conclude that the hexagon solutions remain stable as B becomes 
O(1). 

3.2. Side Band Effects 

It is possible to see how the growth of a solitary mode on the short end 
of the spectrum of growing modes is affected by the other growing modes by 
including an additional long spatial scale xz = E2x in the analysis carried out 
above. This approach is similar to the standard method of including side 
band (3~ around the fastest growing mode, except that here the side bands are 
all on one side of the mode under consideration. 

The resultant equation in one dimension is 

c3Ac~r = k2pA + - 3k2 ]A I 2 A - 2(1 - k 2) ik ~x 2 

It is possible to use Eq. (3.5) to test the stability of the steady state solutions 
of (3.2) to long wavelength perturbations by imposing A = (kZp[2B2/3-  
3k 2] -1)1/2-t-ea(x2, z) as an initially perturbed, initial condition. 

Doing so, we find that the solutions are indeed unstable to long 
wavelength perturbations, and apparently give rise to gradual variation of the 
dominant wavelength. It would be interesting to study the time dependence of 
the variation of the dominant wavelength. This could serve as a basis for 
comparison with the scaling laws described in Section 1. 

3.3. Transitional Behavior 

In order to obtain a glimpse into the transitional behavior between the 
inner spinodal region where there appears to exist the possibility of a smooth 
path to a periodic (although, according to Section 2 most probably an 
unstable) solution and the outlying region in which this possibility no longer 
exists, we examine the behavior at the edge of this inner region, in the one- 
dimensional case, by expanding the parameter B 2 about the value 
B Z = 4 . 5 k  2. Thus we set B 2 =4.5kZ(1 + c~2), kZ= 1 --p6, s=64 t ,  and we 
construct an asymptotic expansion c = &l(X, s) + ~2c2(x  , s )  + . . . .  As before 
a solution of the form e 1 = G(s)eikX+ G(s)e ikx is obtained, and at fifth 
order, the solvability condition yields the amplitude equation 

d 
-~s 6 = p 6  + 3 tGI a G -  3 ]GI 4 G (3.6) 
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Fig. 7. The amplitude of the roll solution. In (a), A*=  A/(3/2 B2/3), and it is assumed 
that B2/3 < 3/2. The bifurcation parameter is given by p = (1 - k2)/e 2, where e 2 = j lc2(0) l l  . In 
(b), 2B/9- 1= 62 and p = ( 1 -  k 2) 6 -4, where 62= r lc~(0)l l .  

As noted by Sivashinsky, (31) this is precisely the form of an equation 
expected to model subcritical bifurcation (here in terms of  the length scale); 
see Fig. 7. This would indicate that perturbations of length scale even 
smaller than 2n would be capable of  destabilizing the system. This would 
correspond to a transition from a region within which the path to the final 
state is smooth (or begins smoothly) to a region within which the system 
jumps in a very highly perturbation-dependent manner. Such a transition is 
precisely what would be expected to be seen in a transition from the spinodal 
region to the nucleation region. 
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4. CONCLUSION 

We have tried to demonstrate those features of spinodal decomposition 
and nucleation which are obtainable by study of the nonlinear Cahn-Hilliard 
equation without reference to a specific noise source. 

First, evidence is given for a smooth transition from spinodal decom- 
position to nucleation somewhere within the classical spinodal. This is seen 
by noting that the energetically admissible solutions (which are not in fact 
local minima) with period of the size of the fastest growing mode are more 
frequent within the deep spinodal region than elsewhere. Furthermore we 
have shown by considering the growth of the critical growing wavelength, 
that hexagon solutions are possible in a region sufficiently close to the 
critical concentration, and that roll solutions are possible within a 
considerably larger subspinodal region, and not beyond. At the edge of the 
region where rolls are possible a transition from subcritical to supercritical 
bifurcation takes place which would be reminiscent of a smooth transition 
from spinodal decomposition to nucleation and growth. 

Secondly, by considering side band effects, a mechanism for describing 
the lengthening of the dominant mode is shown to be a consequence the 
Cahn-Hilliard equation. 

Thus while the Cahn-Hilliard equation cannot be considered to contain 
all the information contained in a full noise driven approximation, we feel 
that we have demonstrated here that the theory is considerably richer than 
would be predicted from linear theory only. 
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